
The #12in23 Challenge - Common Lisp - Trying Common Lisp in
January 2023
Written by Seth Corker on Benevolent Bytes

Cover photo by Milad Fakurian on Unsplash

Why Common Lisp?
Lisp is a family of languages that I’ve always heard about, but never really taken the next step. It’s a technology
that’s influenced so much and yet hasn’t really been in the mainstream. Maybe you’ve heard about it in Beating
the Averages by Paul Graham or taken a look at the syntax and been put off — it can appear quite foreign
compared with popular programming languages today. I thought this would be the perfect time to experience
what Lisp has to offer and figure out if it’s something I’d like to use in 2023 and beyond.

I’ve been exposed to Lisp languages in the past, but mostly though reading and talks. It comes up in the
history of computing, but not often in a modern context. I think that over time, I’ve absorbed enough through
repeated exposure to know a little about Lisp, I’ve just never sat down and used it until now. For the 12 in
23 challenge I chose Common Lisp for January as it’s a popular language with numerous resources and the
Steel Bank Common Lisp compiler because it’s a high performance compiler that runs on most systems, and it
receives regular updates.

Initial thoughts and challenges
Syntax

Lisp is scary at first. It has a quite unfamiliar syntax than most languages out there that follow a C-style syntax.
C-style languages like JavaScript, C#, Ruby, Python etc. all look different, but the structure is very similar.

A class in JavaScript might look like this:

class MyClass {
saySomething(message) {

const prefix = "[SAY]"
console.info(`${prefix}: ${message}`)

}
}

The same in Ruby might look like this:

class MyClass
def say_something(message)

prefix = '[SAY]'
puts "#{prefix}: #{message}"

end
end

There are differences in how the body of a class for function are defined, the convention for naming is camel case
vs. snake case but overall, the structure is the same. Lisp doesn’t look like this at all.

This snippet does the same things as before (it’s a contrived example, there’s no need for a class in any of these
code snippets, but I wanted to show the equivalent concepts).

(defclass my-class () ())

(defmethod say-something ((obj my-class) &key message)
(let ((prefix "[SAY]"))
(format t "~a: ~a~&" prefix message)))

What Lisp mostly breaks down to is an operator, operands and lots of parentheses.

Here are a few examples: Something like (+ 1 2 3) is the same as 1 + 2 + 3 in a C-style language.

Defining a function In Lisp, it looks like this: (defun hello-world () "Hello World") The operator is
defun followed by the operands hello-world, (), "Hello World" which are the name, arguments, and body of
the function.

1

https://unsplash.com/@fakurian?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/58Z17lnVS4U?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
http://www.paulgraham.com/diff.html
http://www.paulgraham.com/diff.html
http://www.paulgraham.com/avg.html
http://www.paulgraham.com/avg.html
https://exercism.org/challenges/12in23
https://exercism.org/challenges/12in23
https://common-lisp.net/
https://www.sbcl.org/


Versus the equivalent in JavaScript:

function helloWorld() {
return "Hello World"

}

Conditionals In Lisp, it looks like this: (if t "true" "false")

Versus the equivalent in JavaScript:

if (true) {
return "true"

} else {
return "false"

}

The challenge with syntax in Lisp is that it takes some time to get used to. It’s consistent, but it’s a big shift for
the languages I’ve used in the past. One major takeaway I’ve had from using Common Lisp for the past month
is that creating plenty of small functions makes it more readable. That might sound obvious, but the number of
parenthesis makes it difficult to delineate expressions easily.

Finding resources

The first week was challenging in learning about the ecosystem. When you learn a new language, it’s not just
the language itself but the conventions, where good resources are, how to use the documentation, etc. As part of
the initial session, I’ve learned more about what exists and doesn’t as part of the core language. Common Lisp
has a small set of functions, which I’m slowly working my way through.

The big challenge for learning right now is that documentation can be challenging to use, Lisp Works is a
common resource, but it’s not easy to navigator understand for a beginner. The best part of the documentation
is the examples, as they illuminate a lot and the rest can be inferred. I’m sure I’ll get used to it as I learn more
along the way.

Interesting language features
Consistency

The syntax is boring. I’ve noticed that most things are straightforward and easy to understand, and it’s not the
syntax that really changes. The only challenge is figuring out what arguments are needed in macros and the
shape of data being passed in. There’s not much to it, once you know a small amount you have all the tools you
need to muddle your way through.

Along these same lines, documentation defined in code is done elegantly, simply add a string after the args
for a function, and then it can be accessed using (documentation 'my-function-name 'function). This is
something I’ve seen in numerous modern languages — most likely inspired from Lisp.

REPL

I use the REPL for other languages. It’s great for trying things out in Ruby and Elixir, but each real has varying
degrees of usefulness. Ruby’s IRB is great for prototyping or testing functions manually, but that’s about it.
Elixir’s IEx has the ability to recompile modules and change the system while it’s running, which makes it more
useful. Common Lisp takes this even further and allows for redefining functions. The REPL becomes invaluable,
it’s used to prototype, and you can adjust anything and update it while the system is running. This feels mod
like interacting with an environment than a simple CLI used for evaluating simple expressions.

Developer experience
Wrestling with IDEs

IDE support is mixed. Visual Studio Code is my editor of choice, but the extensions could be better. They are
just very basic. I couldn’t quite get formatting working or suggestions that went beyond simple function lists.
Everything was just a bit clunky, to the point where even the build in editor on Exercism was better in some
ways.

2

http://www.lispworks.com/documentation/HyperSpec/Front/index.htm


I moved to emacs which I occasionally use but am still a beginner in, it’s a big learning curve but seems like the
best experience for Lisp. The REPL becomes a companion in the editor, and shortcuts for recompiling functions
and evaluating in the REPL make it the most productive choice.

Errors Error messages can be difficult to parse when using SBCL, it’s hard to see where an error happened as
my experience with reading error messages isn’t attuned. I just don’t have the experience in the language to
know what an error is trying to communicate.

Documentation Documentation is still a struggle. Common-Lisp.net has a good quick start which is useful
for getting up and running and gives some context on common tooling in the ecosystem. The Common Lisp
Cookbook is a nice, guided walkthrough for teaching Common Lisp, and I want to work my way through it
more, but in terms of quick reference, I haven’t found anything satisfactory.

Takeaways
I hope to keep using Common Lisp, it’s an interesting language that has a long history and has introduced me
to an entirely different way of programming. Doing a few exercises has been great, but I really want a project
to work on and see how the ecosystem works as a whole. The most difficult challenge I had in the beginning
has been eased with more exposure to common tooling and given more experience with SLIME, working with
Common Lisp will be a far more productive experience. I can’t wait to jump into another language, but I will
also try to work my way through more exercises in Lisp and continue learning.

Resources
Here are some resources to help you on your journey that I’ve found helpful so far. - Common-Lisp.net —
Getting started guide with installation instructions and some context on common tooling. - The Common Lisp
Cookbook — Online book with examples and explanation on various aspects of the language. - Learn X in Y —
A quick cheatsheet/reference for learning though examples - Common Lisp Track on Exercism — Exercises you
can do to sharpen your skills and learn while solving problems

3

https://common-lisp.net/downloads
https://lispcookbook.github.io/cl-cookbook/
https://lispcookbook.github.io/cl-cookbook/
https://slime.common-lisp.dev/
https://common-lisp.net/downloads
https://lispcookbook.github.io/cl-cookbook/
https://lispcookbook.github.io/cl-cookbook/
https://learnxinyminutes.com/docs/common-lisp/
https://exercism.org/tracks/common-lisp

	The #12in23 Challenge - Common Lisp - Trying Common Lisp in January 2023
	Why Common Lisp?
	Initial thoughts and challenges
	Syntax
	Finding resources

	Interesting language features
	Consistency
	REPL

	Developer experience
	Wrestling with IDEs

	Takeaways
	Resources


