
Framer Motion Shared Layout - Create an image gallery in Framer
Motion - Animating between components in React
Written by Seth Corker on Benevolent Bytes

What we’re making
A simple interaction where the user can click on an image on the right side and it will expand over to the left,
becoming the primary image. This technique could be used as an image gallery or a product chooser for an
ecommerce site. Take a look at the CodeSandbox if you want to tinker straight away.

I’ve also done a simpler effect before animated layout transitions, take a look at my tap to expand image
interaction made with Framer Motion

<AutoplayVideo src={[{ src: “s3-bucket://build/2021-04-24-framer-motion-shared-layout-gallery/image-gallery-
animation-demo.mp4”, type: “video/mp4”, },]} controls poster=“s3-bucket://build/2021-04-24-framer-motion-
shared-layout-gallery/image-gallery-animation-demo-poster.jpg” />

How to create the effect
We’ll be using React and the Framer Motion animation library to create this effect. The key components that
make this relatively easy to execute is AnimateSharedLayout which allows for different components to animate
between each other and AnimatePresence which allows components to animate on mount or unmount in React.
We’re using motion components too but we’re keeping the default values and not setting the exit, animate and
initial props. Let’s start with some CSS to get things into position.

A note about the CSS

To make the animations predictable, I’ve opted for set sizes. This isn’t necessary but it allows us to achieve the
effect with fewer elements and less handling of edge cases. You’ll see the .container which houses everything
on the page is centered on the page, has a static height of 620px and has overflow: hidden. This last property
is useful because there are 3 images on the right but when we click on one to expand it, another the current
primary image is added to this list as the one we clicked on becomes the new primary image. If we didn’t have
this we’d see 4 images on the side panel. By hiding the overflow, we only ever see 3.

The .primary-container also has a static height of 620px and min-width: 1070px. This is so that the images
on the right (the .product-gallery) never move to the left as the primary image is unset and reset on the page.
Without this, the images move all the way to the left as the primary image disappears before the next one take
its place. The overall effect isn’t desirable so it’s easier to just ensure the container will always be wide enough
to hold the right gallery in position.

The other minor tweak is setting .product-gallery with z-index: 1. This adjusts the gallery so it’s always on
top, when the primary image is replaced it will animate to the right but it performs a cross-fade which is quite
fast and unnecessary so we mask it by making sure other images are always in front. That’s all the important
pieces out of the way, let’s take a look at how we use AnimatePresence for the primary image and the gallery
images on the right.

Using Animate Presence

Primary Image The first place we use <AnimatePresence /> is for the primary image itself.

<AutoplayVideo src={[{ src: “s3-bucket://build/2021-04-24-framer-motion-shared-layout-gallery/animate-
presence-1.mp4”, type: “video/mp4”, },]} poster=“s3-bucket://build/2021-04-24-framer-motion-shared-layout-
gallery/animate-presence-1-poster.jpg” controls autoPlay={false} preload=“none” />

This video shows the different adding the AnimatePresence component makes to the primary image

If we don’t wrap the primary image in an AnimatePresence component then we’ll see the current primary image
disappear and then the new image animate in from the right. Wrapping the component tells Framer Motion to
animate the current primary image out as the new one enters which is a nicer transition.

<AnimatePresence>
<motion.img

key={primaryProduct}
className="primary-product-image"

1

https://reactjs.org
https://www.framer.com/motion/

src={`https://picsum.photos/id/${primaryProduct}/1280/620`}
alt=""
layoutId={`product-${primaryProduct}`}

/>
</AnimatePresence>

A code snippet showing how AnimatePresence works

Gallery Images The next place <AnimatePresence /> is used is for the gallery on the right.

<AutoplayVideo src={[{ src: “s3-bucket://build/2021-04-24-framer-motion-shared-layout-gallery/animate-
presence-2.mp4”, type: “video/mp4”, },]} controls autoPlay={false} preload=“none” poster=“s3-
bucket://build/2021-04-24-framer-motion-shared-layout-gallery/animate-presence-2-poster.jpg” />

This video shows the different adding the AnimatePresence component makes to the images in the gallery

It’s a little more obvious why we need this. As we click on an image in this gallery, the one we click on will
be come the new primary image and we’ll add the current primary image back to the gallery. Without this
component telling Framer Motion to animate in the new image, the current primary image will appear underneath
the last image on the right and the remaining images will slide upward to take the empty space. This isn’t a bad
effect but it wasn’t the effect I was trying to create, feel free to play around with the animation to get the look
and feel you’re going for!

<AnimatePresence>
{productIds.map(id => (

<ProductImage id={id} key={id} onExpand={setAsPrimary} />
))}

</AnimatePresence>

A code snippet showing how AnimatePresence works

Notice we set the key prop, this is important in React in general when mapping through an array but it’s especially
important for Framer Motion here because it ensures each <ProductImage /> is unique and it can animate them
properly.

This is all very well but now it’s time for the main course.

The Animate Shared Layout component

We use the AnimateSharedLayout component to animate from a gallery image to the primary image. To achieve
the effect we need to choose the components to animate between and decide which shared layout transition we
want to use.

The layoutId prop <AnimateSharedLayout /> works by identifying the elements that in the states they
should animate between, to tell Framer Motion which elements we want to treat as the same we need to share
a layoutId prop. This ensures that although the elements can live in different components as long as they
are descendants of the AnimateSharedLayout component, they will be treated as the same element animating
between different states. This is essential because we need to make an interaction that gives the effect of a
<ProductImage /> on the right expanding over to the left and becoming the primary image.

The first place we add the layoutId prop is on the primary image.

<motion.img
key={primaryProduct}
className="primary-product-image"
src={`https://picsum.photos/id/${primaryProduct}/1280/620`}
alt=""
layoutId={`product-${primaryProduct}`}

/>

The second is within the ProductImage component.

function ProductImage({ id, onExpand }) {
return (

<motion.img
src={`https://picsum.photos/id/${id}/200/200`}
alt=""

2

onClick={() => onExpand(id)}
className="related-product-image"
layoutId={`product-${id}`}

/>
)

}

Choosing crossfade vs. switch Switch is the type of transition which happens by default if no type prop is
set. The old element will be hidden instantly when a new one enters, and the new one will perform the full
transition. This is useful in some situations as it it gives the appearance of moving from one state to the other.
For our animation though, we want want the new image to move over and the old one to move out simultaneously,
this is where crossfade comes in. Crossfade results in both elements performing the same transition. It blends
the different states of the elements that share the same layoutId. This is preferable for the effect we want so
there are no gaps in the gallery.

The final product
Here’s the final product in CodeSandbox if you want to see the code and preview side-by-side. Play around with
it and tweak it to your liking.

Resources
• Framer Motion is the animation library I reach too often because it’s powerful and easy to use.
• Take a look at another tutorial if you’re interested in animating between pages in Next.js
• If you don’t use Next.js, don’t worry, you can still do transitions between pages with React Router and

Framer Motion

3

https://codesandbox.io/s/framer-motion-shared-layout-image-transition-gy8j4?file=/src/App.js
https://www.framer.com/motion/

	Framer Motion Shared Layout - Create an image gallery in Framer Motion - Animating between components in React
	What we’re making
	How to create the effect
	A note about the CSS
	Using Animate Presence
	The Animate Shared Layout component

	The final product
	Resources

