
The #12in23 Challenge - Rust - Trying Rust in Mechanical March
2023
Written by Seth Corker on Benevolent Bytes

Banner photo by Rod Long on Unsplash

Why Rust?
There was a range of languages to choose from in Mechanical March, most of them I haven’t really used but
have been interested in. I’ve dabbled in C and C++ in the past; sending packets across the network using C
in university was my least favourite project, and I initially threw myself into learning C++ by printing out a
massive manual to teach myself game development when I was a teenager.

So, Rust, Go and Zig are left. Go and Zig seem interesting, and I’d like to look at them in the future, but Rust
is a programming language I’ve been shadowing for some time. There always seems to be some compelling tools
that come have come out over the past few years that tout Rust, swc comes to mind for developer tools and
Tauri as a faster Electron alternative. From the outside, it looks like Rust is taking over in cases where speed
and safety are paramount. This is why I thought I’d finally take the plunge.

Developer experience
This is my initial impression of Rust. There are a few things that stand out the most, both good and bad.

Documentation

The documentation for Rust itself is thorough but, Elixir’s hexdocs have raised the bar on what documentation
for packages should look like. I found the documentation for packages, crates in Rust, a bit difficult to understand.
There is module documentation that looks like it’s automatically generated; however, there’s not always examples
of how a crate should actually be used and my understanding of the type annotations wasn’t always enough to
know what’s going on. I often found I needed more context. The only reason I’m harsh of Rust is that Elixir
does an outstanding job on this.

Have a look at the following docs sites for web frameworks in each ecosystem: - Rocket — https://api.rocket.rs/
v0.5/rocket/ - Phoenix — https://hexdocs.pm/phoenix/installation.html Rocket doesn’t really have anything
beyond the different modules, macros, functions, etc. which are provided, there’s nothing on how to use anything.
Guides are hosted on a different website. Contrast this with Phoenix, the default documentation experience is
similar to what’s shown for crate documentation, but there’s also an entire library of guides for each thing you
might want to do.

Editor integration

As important as the language itself, is the integration with your editor. VSCode extension rust-analyzer is good,
it works well and has useful features like a Run and Debug annotation above the main function. You can see
annotations inline and several other useful features you’d expect. This was by far the most useful tool when
developing to figure out type signatures as I needed them rather than sifting though the documentation.

Modern tooling

Rust has modern tooling. It’s all the things that take the hassle out of development, and Rust has tried to
bundle official tools for common use cases. rustup is used for managing Rust installations and cargo is the
builtin package manager. Formatting, testing, documentation and linting is all handled through official solutions.
This is undoubtedly what I want in a language, it’s easy to pickup and get running without trying to figure out
which formatter I should use, which compiler and how to format my code. I still have issues whenever I try to
go back to large Python projects, which package manager do I use? How do I set up my environment? I like
choice, but it can be overwhelming as someone unfamiliar with a new ecosystem.

Language features
Type system

I heard countless people complain about the borrow-checker, but the greatest challenge I had was with typing
itself. Rust is very particular about types, which makes you think a lot more about which types you’re using
and how they behave. I found working with strings the most challenging because they can be pointers, literals

1

https://unsplash.com/@rodlong?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/two-crabs-on-rock-CkwqazrTIwU?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://exercism.org/blog/mechanical-march
https://swc.rs/
https://tauri.app/
https://www.electronjs.org/
https://hexdocs.pm/
https://api.rocket.rs/v0.5/rocket/
https://api.rocket.rs/v0.5/rocket/
https://hexdocs.pm/phoenix/installation.html
https://code.visualstudio.com/docs/languages/rust


etc. And I always seemed to choose the wrong one and have to cast between different types frequently, I put this
down to my lack of experience with Rust. It’s interesting to think about correct type usage at a low level, it’s
not something you usually think about when working with dynamic and high-level languages.

Useful compiler errors

I was put off by lower level programming languages by doing C in university for a networking assignment, as I
mentioned earlier. It was frustrating how difficult it was working with strings and arrays compared with previous
programs I’d written in Python and Java. I specifically remember debugging an issue where I accidentally wrote
over a piece of memory. Compiler errors weren’t helpful, it was a more manual process of commenting out code,
rerunning or stepping through line by line in your head. Rust solves those issues for me.

An early example I ran into was when I attempted to multiply an u8 (unsigned 8 bit integer) by 200, u8 can
only hold values from 0 to 255, so it would overflow and Rust shows an error during compilation. Nice!

error: this arithmetic operation will overflow
--> src/main.rs:32:31
|

32 | print!("a: {:?} * 4 is ", number_a * 4)
| ˆˆˆˆˆˆˆˆˆˆˆˆ attempt to compute `128_u8 * 4_u8`, which would overflow
|
= note: `#[deny(arithmetic_overflow)] ` on by default

Compilation is quick and feedback from errors was really useful in debugging.

Pattern matching

One of my favourite features exists in Rust too! match is reminiscent of case in Elixir and the compiler checks
exhaustiveness to make sure you’re not missing unhandled cases.

/// Find the regexp given a reader
fn find_in_lines<T: BufRead + Sized>(reader: T, regexp: Regex) {

for (index, line) in reader.lines().enumerate() {
let extracted_line = line.unwrap();
let contains_substring = regexp.find(&extracted_line);

match contains_substring {
Some(_) => println!("{}: {}", index, extracted_line.trim()),
None => (),

}
}

}

Takeaways
I enjoyed my short time with Rust and I want to keep learning and building things. I didn’t get to spend as
much time with it as I would have liked. That’s a nice feeling to have, it means I liked Rust enough to use it
again. I don’t use a language that is so low level with high-level constructs in my everyday. Not only that, but
I’ve been really excited to discover more use cases and tinker around with.

The last project I started was building a command line app with Clap and learned how annotations work with
the derive API. Rust has some powerful language features, and I can see an immediate use case when combined
with existing languages I use; I think it will be cool to write some high-performance Rust utilities that can be
leveraged by Elixir using NIFs. For now, I’m leaving Rust to see what other languages are out there, but I
suspect I’ll be back sometime soon.

Resources
• Playground - An online playground for the language
• rust-analyser for VSCode
• Learn Rust on exercism

2

https://docs.rs/clap/latest/clap/
https://docs.rs/crate/rustler/latest
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021
https://code.visualstudio.com/docs/languages/rust
https://exercism.org/tracks/rust

	The #12in23 Challenge - Rust - Trying Rust in Mechanical March 2023
	Why Rust?
	Developer experience
	Documentation
	Editor integration
	Modern tooling

	Language features
	Type system
	Useful compiler errors
	Pattern matching

	Takeaways
	Resources


