Why CSS is difficult to get right? - Break the CSS Stigma: Don’t be
afraid of CSS

Written by Seth Corker on Benevolent Bytes

Cascading Style Sheets (CSS) is the language for turning a webpage from a designer’s nightmare into something
aesthetically pleasing. It has helped craft the vibrant and usable web we know and use every day. As a web
developer, I write a lot of CSS along with JavaScript and HTML. These are the core technologies of the web
and are the foundations of a web developer. I like CSS, it’s not perfect but I’ve become competent in it and
it’s easy for everyone to get involved. Not all web developers learn CSS. Many think they don’t need to. CSS
has a stigma for two reasons. The first is the difficulty of learning and using CSS effectively. Read The reason
developers avoid CSS to understand why the second problem is systemic, developers don’t always respect design.
CSS isn’t everyone’s favourite language, but it’s as inescapable as JavaScript for web developers.

The core concept of CSS is to select HTML elements and apply styling to them. Although it’s easy to get started,
it can become more complex with larger teams or older browsers. If you're a programmer and used to having a
lot of flexibility, then CSS will seem like a very constrained sandbox. By looking at some stumbling blocks, we
can overcome them and become more comfortable with CSS.

Overloaded Terminology

css snippet showing composition of .header classes to .header.darkmode CSS can be intimidating if you're
unfamiliar with the core concepts but it’s not that difficult (most of the time). If you’re a programmer, the first
challenge is understanding overloaded terminology. Class and id do not mean quite the same thing in CSS as
they do in JavaScript.

“I used an ID so it didn’t break the site”

A CSS class is a selector that styles everything with that class. Give an HTML a class attribute and you can
select that class to apply rules that style the element. An element can have multiple classes which will merge
rule-sets and cover more individual cases. This is the most flexible and direct methods of styling elements, your
elements share a direct relationship with your rules defined in CSS.

Common Pitfalls A common mistake I see developers making when styling elements is giving the element an
id attribute to style a single element.

An id selector gets the job done, you've selected and styled a specific element but it’s not a scalable approach.
The problem with doing this is you’ve circumvented a core principle in CSS, the Cascading part. You can only
style a single element like this, you're not enjoying any code reuse. If you want to have multiple elements that
share the rule-set then a unique id needs adding to each element and the rule-set.

Selector specificity

using the > selector in CSS to select child elements Specificity is easy to learn but due to the cascading nature
of CSS can become difficult to manage. Inherited properties are a powerful but often maligned feature that gets
developers into trouble.

“The only way is to use !limportant, should be fine.”

The idea is simple, apply a rule-set to a parent HTML element, and the child element will inherit some of those
properties for styling. An element is selected based on its parent elements. Child elements inherit properties to
avoid defining every property again.

Common Pitfalls The specificity problems I see developers run into is two-fold. Notice I said some when
referring to the properties a child will inherit from its parent element. Not all properties are inherited and what
if you don’t want to inherit a property?

One key thing to learn in CSS is what gets inherited. Although not always obvious, but it’s important to learn
to understand where to add properties and how this visibly affects elements.

An example of an inherited property is *color*. A parent with color: red; will mean any children will inherit
the color property as red unless it’s overridden by a more specific rule.

A property that isn’t inherited is background-color. Any children of a parent with this property set will
continue to have a transparent background by default. To inherit the parent’s background-color property, create
a new rule background-color: inherit;.



Another mistake I see inexperienced web developers make is overusing !important. This keyword meant to be
used in dire situations and is almost always a complete hack. The problem is often solved by embracing CSS
and selecting the element by other means. Specificity is a skill that’s developed over time once you know that
specificity follows the following pattern:

Type > Class > Id Increases in specificity from left to right

Reasoning about CSS becomes much easier when you know how specificity works. Over time you’ll learn how
best to select HTML elements. It will be much easier to avoid using hacks to force a property on an element
with !important.

Constraints

As far as languages go CSS has many constraints. It’s designed with a single goal in mind to adjust the
presentation of HTML. Its focus is admirable but these constraints can feel encumbering compared with other
languages. The constraints make CSS easy to parse for designers and developers alike but can hinder development.

“CSS is not a real programming language”

There are common features that CSS lacks which confounds new developers learning CSS. The biggest gripes are
no variables, limited ways for code reuse and lack of advanced selectors. This might seem like a big deal but it
can be overcome. The key is to understand the symbiotic relationship between CSS, HTML and JavaScript to
pick up the slack where one falls down.

Common Pitfalls Complaints I hear from developers usually go like this.
“I can’t get this to look like the design because I can’t select this element!”

If you can’t select an element then ask yourself why? If it’s not obvious, then maybe you need to consider
changing the HTML. To position elements in CSS is not always intuitive or straightforward. If you can’t do
what you need with a single element, then look to the humble <div> tag. It is often necessary to group elements
with <div> tags for styling. Don’t be afraid to change the structure of your HTML to make it easier to style.

“I want to use the same colour for all these elements but I can’t use variables!”

CSS doesn’t have variables because CSS prefers sharing properties through inheritance. It’s not as flexible but
for many common cases, it’s preferable to make a class that has the intended style and add that class to all the
elements you need. The alternative is to inherit the property from parent elements. The key is to embrace the
constraints CSS has and change your way of thinking.

“How do I make this button do X in CSS?”

Some things in CSS just aren’t intuitive or possible. There is a lot you can do with CSS but sometimes it needs
some help. A common case is changing the look of a button depending on different states. Mostly, CSS does
this but the most intuitive and flexible way is to use JavaScript. You can manage the state of the button in
JavaScript and update the class depending on the state. This way, you give CSS the ability to do what it does
best and style the element appropriately based on the class.

It’s vital to embrace the constraints of CSS but know its limitations. Sometimes it’s necessary to supplement
CSS with one of the other core web technologies. Each technology has a focus and it’s better to embrace its
strengths to avoid swimming upstream.

Conclusion

CSS gets a lot of flak from developers but it’s not going anywhere for the time being. It’s an integral part of the
web and is essential for breathing life into web pages and web apps. Although it’s not always the easiest to wield
effectively, it’s important to learn and improve. The worst mistake as a web developer is to think CSS is not
important and not worth investing time in. CSS has its flaws but it shouldn’t be something to battle with. Take
the time to:

e Figure out how best to use CSS with HTML to have the best experience.

e Learn the ins and outs of selectors and specificity and avoid common pitfalls such as adding !important
when it’s not needed.

e Embrace the constraints of CSS and recognize the limitations. Delegate unsuited tasks to HTML or
JavaScript instead.

There’s no need to fear CSS. Get your hands dirty and learn CSS now so you don’t dread the next time the
designer wants to make some small tweaks.



	Why CSS is difficult to get right? - Break the CSS Stigma: Don’t be afraid of CSS
	Overloaded Terminology
	Selector specificity
	Constraints
	Conclusion


